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The study of arsenic redistribution in silicon during thermal oxidation is important
in the fabrication of shaliow p-n junctions. Arsenic "snowplowing" at the 8i-8i0,
interface during 1 atm therma! oxidation of ion implanted Si has been described. 12 1
this paper, we report the redistribution of arsenic in silicon during 1 atm. HC] oxidation
and also high pressure dry O, oxidation. The redistribution phenomenon has been
investigated in terms of the ratio of the rates of oxidation of Si and diffusion of As in Si,
B/D’. When the oxidation rate is controlled by diffusion of oxygen through the existing
oxide, the oxide thickness, X, will be given by:

X = Bt (1)
where B is the parabolic growth rate constant at a given temperature for an oxidation
time t. D is related to the As diffusion length Xag bY:

X, = 2 (D} )
where D is the diffusivity of As in Si during time t. The ratio of the Si-Si0y interface
velocity (dX/dt) to arsenic diffusion velocity (dX As/dt), B/(ZD’), is a dimensionless

quantity.

Samples were prepared by implantation of 25 keV, 3x101° As*/cmz, on (100), n-
type silicon. High pressure, dry O, oxidations at temperatures of 600°C and 800°C have
been made. Ramping up of the temperature of the high pressure apparatus to achieve
thermal equilibrium, and ramping down after depressurizing was carried out in a nitrogen
atmosphere. Oxygen pressures of 560 psi(38atm) up to 2100 psi(143 atm) were employed
in order to change the oxidation rates, while keeping the diffusivity of arsenic constant.
The high pressure apparatus and detailed procedures will be reported elsewhere, but are
similar to previously published experiments.3 Normal 1 atm dry oxidation with a 4.5%
HC! ambient at 690°C and 800°C was performed in order to change the relative rate by

varying the temperature. The HCl ambient was introduced for impurity gettering.

All the samples were cleaned prior to oxidation by the RCA cleaning method*
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followed by an § sec HF dip. The oxide thicknesses were measured by Nanospec/AFT
010-0180 and an ellipsometer. The depth profile of arsenic was examined by secondary
fon-mass spectroscopy (SIMS) using a 15 keV primary 02* beam and by 2 MeV He ion
Rutherford backscattering spectroscopy (RBS). About 200 & of gold was evaporated on
the SiOg surfaces of the several samples in order to avoid charging of the SiO, during
SIMS measurements. The ratio of the arsenic signal to the sputtered oxygen signal was

used to improve quantitatve accuracy of arsenic concentration measurements.

| F MR RANS | | SPREEIE. | J SR

Calibration of the arsenic concentration in the 8i0) was made by using a standard sample
which was prepared by implanting 100 keV, lxlO15 As"/cm2 into 1500& thermal SiOz on

Si.

When silicon is thermally oxidized, the dopant will redistribute at the interface
until its chemical potential becomes equal on both sides of the interface, i.e., in Si and
§i0,. The ratio of the thermodynamic equilibrium concentration of the impurity dopant
in silicon to that in silicon dioxide at the interface is defined as the equilibrium
segregation coefficient, m. The experimentally determined segregation coefficient may
Jiffer from the calculated thermodynamic equilibrium segregation coefficient5. This is
due to the competitive relationship between oxidation rate which releases impurities and
the diffusivity of impurity, i.e., the rate at which one system achieves equilibrium. The
pile-up and depletion phenomenon of impurities near the Si-8i0, interface is known to be
dependent on the relative rates of oxidation and impurity diffusion in silicon and the

5,8 L and the

segregation coefficient. Here, the relative rate is given by B/D
thermodynamic equilibrium segregation coefficient depends upon the ratio of the
impurity solubility in the oxide to that in silicon. When the impurity segregation
chefficient is less than 1 (higher solubility in the SiO, than in §i), as is the case for
boron, the impurity will deplete. into the Si02.5’7 On the other hand, for the impurity
segregation coefficient larger than 1, impurities such as arsenic will pile-up in 8i near

the Interface as the Si surface recedes during oxidation. Hence, impurity pile-up or
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depletion can be observed due to solubility differences between two phases regardless of
impurity capture by the new product phase 8i0,, or push-back into the Si by the 8i0,.
The relationship between the relative rate of oxidation to diffusion in silicon, B/D‘, and
the impurity pile-up in Si or depletion into the Si0, near the Si-S8i04 interface has
already been observed before for both phosphorous and boron in §i.8 The redistribution
of phosphorous in silicon for values of B/D’ ranging from 0.1 to 10 was presented, with
more pile-up found at the interface for greater values of B/D’. Impurity "snowplowing"
also depends on the diffusivity of the impurity in the oxide. For example, for impurities
such as gallium in Si, there is no snowplowing, only depletion of Ga near the Si side of the
interface due to fast diffusion of Ga in the oxide even though the segregation coefficient

is larger than 1.5

During high pressure oxidation, the increased oxygen pressure enhances the

8,10 When the oxidation rate is very high compared to the

oxidation rate significantly.
diffusivity of As in Si, trapping of As in Si04 is observed. For the low temperature
600°C oxidations at normal 1 atm or at elevated pressure, the oxidation rate becomes
significantly greater than the diffusion rate of arsenic, which is relatively unaffected by
the O, pressure. This is due to the fact that the diffusivity value decreases more rapidly
with temperature than the oxidation rate. Figure 1 shows the As and O profiles in the
8i04 on Si sumple for 1520 psi O4 oxidation at 600°C for 5 min. Trapping of the arsenic
in §i0, is clearly observed in Figs. 1 and 2. It has been conformed by RBS and SIMS that
the amount of arsenic trapped in 8iO, is greater for oxidation at 1520 psi than those for
970 psi, at 800°C and 5 min oxidation. It reduces further for 560 psi at 800°C for 5 min
oxidation (Fig. 3) and the trapping is totally insignificant for 1 atm (or 14.7 psi) at 800°C
for 6 hours oxidation (Fig. 4). A slight pile-up in silicon near the interface is attributed
to the effect of arsenic solubility differences between the Si and the §iO, phases (Fig. 1,
2). On the other hand, "snowplowing" of arsenic is observed in Fig. 3 for 560 psi, § min at

800°C, and most pronounced for 1 atm. at 800°C, 5 min. oxidation (Fig. 4). From a
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concentration dependent diffusivity calculation®® and for a 1 atm oxidation at 800°C,

3
2
"
bl

xd=2(m)‘, the diffusion length xd=2(Dt)’ of arsenic is about 360A. Considering the
molar ratfos, the depth of Si consumed for 20004 of oxide growth will be 880 4 (dg; =
0.444, where d is thickness of SiOz). Arsenic snowplowing is shown in Pigs. 3, 4. Arsenic
snowplowing in Si near the interface is likely due to the impurity segregation coefficient,
rather than impurity diffusion. These results reveals two aspects of the redistribution
phenomena depending on the conditions. One is that the thermodynamic equilibrium
segregation coefficient dominates when the diffusion rate is high enough; the other is
that the oxidation rate dominates over the thermodynamic equilibrium segregation

coefficient for the low temperature, or high pressure condition.

In Table 1 below, the ratio of the rates of oxidation and dopant diffusivity in
silicon, B/D* for our experimental conditions, are given. For an oxide thickness less than
100024 (including high pressure oxidation), oxdation time and thickness were extrapolated
(using log x versus log t) into the possible parabolic growth region for obtaining the
dimensionless quantity, B/DY.  Arsenic diffusivity values for 800°C and 600°C were
extrapolated from the diffusivity graph.ll As our calculations indicate, snowplowing of
the arsenic impurity results for B/D* smaller than 50. The amounts of arsenic in the
Si02 increases with increasing B/Dt. In the case where B/D* exceeds 50, the Si-8i0g
interface advencement becomes dominant over the thermodynamic segregation
coefficient, hence no snowplowing occurs and most of the arsenic becomes trapped. Deal
observed that an impurity such as phosphorous accumulates more in Si near the interface
for B/Di ranging from 0.1 to 10, as the temperature becomes lower or the B/Di ratio

incl-eases.s’l z

These observations indicate a strong dependency upon the relative rates B/D* of
arsenic impurity pile-up, trapping phenomena during thermal oxidation. For the B/D’

value larger than 50, the oxidation rate dominates, producing predominant non-
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equilibrium conditions. The pile-up beyond this critical value is complicated and depends
both upon the relative rates B/D’ and chemical potentials. The thermodynamic
equilibrium segregation coefficient becomes dominant for B/D’ ranging from 50
downwards.

In conclusion, the redistribution of As during thermal oxidation of Si depends on the
ratio B/Di. Dominance of the oxidation rate over other factors, such as the
thermodynamic equilibrium segregation coefficient and diffusion rate, has been
observed. For B/D’ larger than the order of 50, arsenic atoms are trapped in the SiOq.
For B/D’ below 50, arsenic snowplowing results, which means a dominance of
thermodynamic segregation coefficient over the oxidation rate.

This research is supported in part by Semiconductor Research Corporation and

Microelectronic Center of North Carolina (Choi, Numan, and Chu) and in part by the

Office of Naval Research (Srivastava and Irene).
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Figure Captions
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Figure 1

A SIMS profile of arsenic in SiO4 grown on 25 KeV, 3x1015 As*/em? 1/1 Si substrate at

e

VRS

600°C, 1520psi, 270 min with dry O4 ambient. 200 A gold film has been evaporated on

Si0,.

- - :‘I'l'v'l

Figure 2

A large amount of arsenic was trapped in the SiO, during 1520 psi, 5 min dry O,

oxidation at 800°C.

Figure 3

A significantly reduced arsenic trapped in the SiOz, compared with results for oxidation

at higher B/D’ values, has been observed while arsenic snowplowing has also been seen.

Figure 4

t

A prominent arsenic snowplowing has been observed for the B/D" value of 10.
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